
Designing Phrase Builder: A Mobile
Real-Time Query Expansion Interface

Tim Paek, Bongshin Lee, Bo Thiesson
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
{timpaek, bongshin, thiesson}@microsoft.com

ABSTRACT

As users enter web queries, real-time query expansion (RTQE)

interfaces offer suggestions based on an index garnered from

query logs. In selecting a suggestion, users can potentially reduce

keystrokes, which can be very beneficial on mobile devices with

deficient input means. Unfortunately, RTQE interfaces typically

provide little assistance when only parts of an intended query

appear among the suggestion choices. In this paper, we introduce

Phrase Builder, an RTQE interface that reduces keystrokes by

facilitating the selection of individual query words and by

leveraging back-off query techniques to offer completions for out-

of-index queries. We describe how we implemented a small

memory footprint index and retrieval algorithm, and discuss

lessons learned from three versions of the user interface, which

was iteratively designed through user studies. Compared to

standard auto-completion and typing, the last version of Phrase

Builder reduced more keystrokes-per-character, was perceived to

be faster, and was overall preferred by users.

Categories and Subject Descriptors

H5.2 Information interfaces and presentation: User Interfaces. -

Graphical user interfaces. H.3.3 Information Search and Retrieval:

Query formulation.

General Terms

Design, Human Factors

Keywords

Interactive query expansion, real-time, mobile, auto-completion

1. INTRODUCTION
Nowadays, users of major search engines are probably all familiar

with having a drop-down box appear as they type their web

queries showing selectable popular matches garnered from search

query logs. Some engines (e.g., [13]) use prefix matching to show

query matches which complete the text entered so far (e.g.,

“speakeasy” for “spea”), along with the number of web results

that will appear for that query. Other engines (e.g., [16]) also

enable infix matching to show query matches which contain the

entered text anywhere in the suggestion (e.g., “britney spears” for

“spea”). In all cases, matches are shown in rank order according

to a relevance function. What looks like simple auto-completion

to the typical user is known in the information retrieval (IR)

community as query expansion, the process of supplementing an

original query with additional terms that are ranked by some

numeric score [11]. Because query quality directly impacts search

result quality [9], query expansion has been pursued as a method

for improving IR performance. With interactive query expansion,

users participate in the selection of terms for the initial and/or

subsequent queries [11]. Real-time query expansion (RTQE) is a

variant of interactive query expansion in which expansion choices

are presented while users are still formulating their queries [32].

RTQE interfaces can display expansion choices (or simply

suggestions) after each word (e.g., [32]) or each character.

Suggestions can constitute completions [13][16], substring

matches [16], and even spelling corrections [11][13][16]. RTQE

interfaces have also been used as a mechanism for pseudo-

relevance feedback [32].

Although previous research has shown that RTQE interfaces can

lead to initial queries of better quality and more user engagement

in search [31], the question of whether RTQE interfaces can also

serve the purpose of reducing keystrokes for mobile search has

only recently begun to be explored [20]. By reducing keystrokes,

RTQE interfaces could alleviate some of the burden of using

mobile devices with deficient input means. In this paper, we

present a new RTQE interface called Phrase Builder that not only

retains the benefits of interactive query expansion, but also

captures an additional benefit: reduced keystrokes for mobile web

queries. In theory, RTQE interfaces should be able to reduce

keystrokes because users can select choices instead of having to

type them out in full. However, this benefit does not apply when

the query users have in mind either does not show up among the

suggestions or only partially appears among the suggestions. To

handle the former case (i.e., out-of-index queries), Phrase Builder

leverages back-off query techniques to suggest possible phrases

composed of words that are in the index. To handle the latter case

(i.e., partial matches), it enables the selection of individual words

as well as whole phrases in the suggestions. Shipped as part of

Live Search Mobile (Figure 1), Phrase Builder is available for

download1 on all Windows Mobile phones.

This paper consists of three contributions. First, we elaborate on

the motivation for Phrase Builder and detail how we implemented

a small memory footprint index and retrieval algorithm with back-

off query techniques on a mobile device. Second, we describe

three versions of the user interface, which was iteratively designed

through user studies. Third, we evaluate the different versions at

both quantitative and qualitative levels, and discuss trade-offs that

were made in order to arrive at the final product version.

1 Live Search Mobile download: http://wls.live.com

Copyright is held by the author/owner(s).

MobileHCI’09, September 15 - 18, 2009, Bonn, Germany.

ACM 978-1-60558-281-8.

http://wls.live.com/

2. APPROACH

2.1 Motivation
According to market research, mobile phones are poised to rival

the PC as the dominant Internet platform in the near future [17].

As mobile Internet usage continues to rise, a recent analysis has

shown that the limited text-input capabilities of mobile devices do

impact the way users search for information [5]. Furthermore,

because the average number of queries per session is significantly

less for mobile devices than for desktop computers, researchers

have highlighted the importance of getting useful query

expansions to users during their initial formulation of queries [21].

With the above mobile search findings in mind, we sought to

develop an RTQE interface customized for mobile usage. We

were motivated by three goals:

1. Always provide suggestions immediately.

2. Reduce keystrokes for web queries.

3. Design a user interface that requires little cognitive effort and

no training.

On the desktop, these three goals are easily achieved using

standard auto-completion. On the mobile device, where typing is

constrained, we endeavored to improve upon auto-completion by

allowing users to select the individual words of a suggestion and

complete queries that are out-of-index but whose words are in the

index.

To meet our first goal, our index and retrieval algorithm must not

only provide suggestions quickly, but always do so even when the

data connection is slow. For this reason, and the fact that we

wanted to allow for updating of our index with user-generated

queries (which can be cleared), we decided to perform RTQE on

the mobile device itself. As such, we needed a small memory

footprint index and retrieval algorithm, as well as techniques for

maximally utilizing whatever index we stored on the device.

For our second goal, we decided to minimize keystrokes instead

of time because measures of speed can be easily confounded by

factors such as familiarity with the keyboard layout, finger size,

nail length, age group, etc. By focusing on keystrokes (like

previous research [20]), we can avoid having to average across

lots of different participants for our experiments. In the long term,

as users become more proficient with an RTQE interface,

reducing keystrokes should also improve speed of entry.

It is important to note that our second goal is to reduce keystrokes

for web queries, not general text entry. Predictive text entry

methods such as T9 [15] and POBox [30] utilize lexicons or

dictionaries that are general-purpose and domain-independent.

However, our index is a corpus of web queries with entries and

relevance (or popularity) scores that change over time, and the

back-off techniques we discuss in Section 2.4 relate specifically to

query structure. Although it is possible to use both predictive text

entry methods and RTQE, in practice, most RTQE interfaces

disable predictive text entry to avoid confusing users with

multiple suggestions.

Finally, our third goal, which is the main focus of this paper,

relates to mobile usability. As will be evident in our user studies,

this goal required us to ultimately sacrifice some novelty in the

user interface for familiarity and ease-of-use. Starting from

Section 3, we discuss how we iteratively designed our user

interface to achieve this critical goal.

2.2 Device Details
Because most Windows Mobile users, our target audience for

Live Search Mobile, own smartphones with a directional pad (i.e.,

d-pad), we specifically designed our RTQE interaction around this

input modality. Although we could have evaluated our interface

on a smartphone with a numeric keypad, we decided to use a

smartphone with a miniature QWERTY keyboard for three

reasons: 1) any significant keystroke reduction we find on a

Qwerty device is likely to be more significant for a numeric

keypad device, because typing is not as constrained, 2) QWERTY

devices make up the majority of the smartphone market [23], and

3) previous research has already demonstrated that RTQE can

reduce keystrokes on numeric keypad devices [20].

We implemented our Phrase Builder prototype on a Samsung

Blackjack SGH-i608 smartphone with a 320x240 pixel QVGA

screen. The user interface was developed using Microsoft

Windows Mobile 5 Smartphone SDK and PocketPiccolo.NET

[14].

2.3 Index and Retrieval Algorithm
In this section, we describe how we implemented a small memory

footprint index and retrieval algorithm for mobile search based on

k-best suffix arrays. A k-best suffix array is a convenient data

structure for encoding an index which facilitates fast and efficient

retrieval of k “best” matches according to some numeric score.

Here, we provide sufficient technical details for those familiar

with a k-best suffix array to reproduce our implementation. To

learn more about k-best suffix arrays and how they compare to

other data structures and retrieval algorithms, we refer the reader

to [6][8].

Similar to traditional suffix arrays [29], k-best suffix arrays

arrange all suffixes in the dictionary (in our case, the query logs)

into an array. However, k-best suffix arrays arrange the suffixes

according to two alternating orders – the usual lexicographical

ordering and an ordering based on a numeric figure of merit [3].

Because the k-best suffix array can be sorted by both

lexicographic order and the figure of merit, it is a convenient data

structure for finding the k-most popular matches for a substring.

For notation, we henceforth express substrings as wildcard

queries, or queries that utilize wildcards (*) to match zero or more

characters. We also denote the text the user has entered via typing

or selection at the time of the query as the text-so-far. In providing

suggestions, k-best suffix arrays can support both prefix matching

(by appending a wildcard to the end of the text-so-far; e.g.,

“spea*” retrieves “speakeasy”) as well as infix matching (by

appending a wildcard to the beginning and end of the text-so-far;

Figure 1. Screenshot of Phrase Builder for Live Search

Mobile on a Windows Mobile smartphone

e.g., “*spea*” retrieves “britney spears”) in a computationally

efficient way.

In order to minimize memory footprint, we decided to exclude

substring matching within words (e.g., “i-speak”) and to modify

k-best suffix arrays to support only substring matching of word

prefixes (e.g., “britney spears”). Technically, this modification is

achieved by allowing the k-best suffix array to contain only

pointers (see [6] for more details) to the beginning of words. We

viewed the word prefix matching as sufficient for mobile RTQE.

By making this modification, we were able to reduce the memory

footprint by a factor of 5. Overall, our index is roughly 1.3 times2

the size of the raw dictionary text (without the figure of merit).

Besides meeting memory constraints, our retrieval algorithm has

to be computationally efficient. With k-best suffix arrays, the k-

most popular matches can be found in time close to O(log N) for

most practical situations, with a worst case guarantee of O(sqrt

N), where N is the number of words in the query logs [6]. In

contrast, a standard suffix array finds all matches to a substring in

O(log N) time [29], but does not order the matches by popularity

(one of the most commonly used figure of merits). Finding the k-

best matches for short substrings, as the users begin to type their

intended queries, can therefore be prohibitively demanding for the

standard suffix array, because in this case we will have to

sequentially search through a large set of returned matches in

order to determine the k-best.

The query logs used for the Phrase Builder index were collected

from Live Search Mobile for a period of four months. Because the

Blackjack smartphone only has about 25 MB of available RAM,

in encoding the k-best suffix arrays, we limited the query logs to

include just those queries which had at least 5K popularity hits.

Overall, this left us with an index of roughly 122K unique queries

taking up only 2.2 MB of storage space.

2.4 Back-off Techniques
The size of the index used for RTQE naturally affects the quality

of the suggestions. With only 122K entries, many intended

queries may not exist in our index. In this section, we describe

back-off query techniques that allow Phrase Builder to provide

suggestions for many out-of-index queries, thereby increasing the

coverage of our index.

In order to fully capitalize on the vocabulary of the index, we use

the following algorithm to generate supplementary suggestions.

This algorithm is used whenever we cannot retrieve enough

suggestions for the text-so-far:

(1) From the text-so-far, generate back-off queries by iteratively

replacing the token words w1 to wn-1 of the text-so-far with

wildcards until only the last word wn is left.

(2) For each back-off query, retrieve matches from the index

(which we henceforth denote as back-off matches).

(3) For each back-off match, replace the substring in the back-

off match corresponding to the wildcard with the substring in

the text-so-far that was initially replaced in step (1).

2 The factor depends on the average length of entries in the index.

The factor of 1.3 is calculated for our index of query logs which

had an average entry length of 14 characters. The factor is

smaller for an index with longer entry lengths, and the other

way around.

To illustrate how this algorithm works, suppose the user is

intending to search for “chai tea ice cream” and has already typed

“chai tea i.” We first attempt to find suggestions for the query

“chai tea i*.” If too few choices are returned, according to step

(1), we generate the back-off queries listed in the first column of

Table 1. The first back-off query is “* tea i*” which was obtained

by replacing the first word “chai” with a wildcard. Submitting this

as a new query in step (2), we retrieve “green tea ice cream” from

the index. Applying step (3), we now replace the word “green” in

the back-off match corresponding to the wildcard with the

originally replaced word in the text-so-far in step (1), viz. “chai.”

This produces the suggestion “chai tea ice cream” in the third

column. If we still do not have enough suggestions, we back-off

to “* i*” which retrieves “google images,” resulting in “chai tea

images.” Finally, we continue backing-off until we have enough

suggestions or until we ultimately back-off to the individual word,

or unigram, “i*.” By the time we reach the unigram, we have lost

all surrounding context; hence, “i*” retrieves “itunes” resulting in

the peculiar suggestion “chai tea itunes.”

In order to avoid peculiar suggestions in the shipped version of

Phrase Builder, which has 6 separate indexes, we decided to rank

back-off suggestions lower than non-back-off suggestions, and to

sort back-off suggestions by how much of the original text-so-far

was replaced by wildcards. A promising research direction for

improving the relevance of back-off suggestions is to generate

back-off queries using semantic (e.g., <NamedEntity>) and

syntactic categories (e.g., <Adjective>) to inform which words to

replace with wildcards.

Because Phrase Builder employs back-off queries that ultimately

match unigrams, it almost always provides suggestions. Even for

out-of-index queries such as “this is a test of the american

broadcast system,” as long as the words are somewhere in the

index, and individual word selection is possible (as we discuss in

Section 3), we can provide suggestions for each word, and hence,

compositionally for the entire phrase. In the worst case, for out-of-

vocabulary (OOV) words, the user will have to type out the word

verbatim. But because the shipped version of Phrase Builder adds

recent queries to the index, OOV words quickly become in-

vocabulary (IV) and hence available for back-off matching.

2.4.1 Pruning the Index
Our back-off query techniques are very similar to those used in

speech recognition for pruning language models [18], where the

probability of an unseen or infrequent n-word sequence (i.e., n-

gram) is estimated by the probability of its (n-1)-word sequence

until finally, the unigram (1-word) estimate is used [24]. The goal

of language model pruning is to exclude those n-grams which can

be estimated by their back-off probabilities so as to take a small

loss in coverage but acquire a big gain in memory performance

(since pruning reduces the number of parameters to estimate).

Similarly, for RTQE we can prune what queries are included in

Table 1. Back-off queries, back-off matches and generated

suggestions for the query “chai tea i”

Query Index Match Suggestion

chai tea i* × ×

* tea i* green tea ice cream chai tea ice cream

* i* google images chai tea images

i* itunes chai tea itunes

the index to reduce the storage size on the mobile device. One

simple pruning algorithm is to iterate through the query logs in

rank order building up a lexicon and adding only queries with

OOV words to the index. For example, if the index already

contains “britney spears music” and “music video,” we do not

need to add “britney spears music video” since our back-off query

techniques would provide that as a suggestion.

2.5 Related Research
Besides the previously mentioned RTQE interface that initiates

query suggestions after each word [31], very little research has

investigated mobile RTQE. Recently, [20] found that RTQE on a

numeric keypad phone could reduce keystrokes by about 50%,

though this result was for multi-tap and only for queries that

existed in the index. To our knowledge, no prior research has

examined how to facilitate RTQE when the query users have in

mind does not appear in the index (for which we use back-off

query techniques), or partially appears among the choices (for

which we use individual word selection), nor how to deal with

these cases within the constraints imposed by mobile devices.

In IR, many different methods for generating query

recommendations and expansions have been pursued. Among

methods that utilize query logs, [34] combined a model of

sequential search behavior with content-based similarity to

recommend related queries. [10] used probabilistic correlations

between query words and document words in the query logs to

generate expansion words. For mobile devices, [22] used

contextual signals such as time of day and inferred location to

predict and rank expansions.

Outside of query expansion, [4] investigated automatically

enriching mobile page content by adding additional relevant

words for indexing. Because many mobile devices have small

displays, [7] explored displaying related queries instead of snippet

text in the search results. [19] proposed design guidelines for

mobile search interfaces on small screens, but did not consider

any interfaces with RTQE. [31] explored treating individual

words of a suggestion list as buttons that can be touched in

multimodal refinement of a voice search results.

To deal with the difficulties of text entry on numeric keypad

phones, various consecutive and concurrent text-entry techniques,

which typically utilize a general-purpose lexicon as discussed

previously, have been developed [27][30][33], with T9 being the

most commercially successful [15].

3. USER INTERFACES
We now survey three versions of the Phrase Builder user interface

corresponding to three attempts to realize the second and third

goals outlined in Section 2.1. Our intention is not to argue that one

is definitively better than another, but to highlight the trade-offs

that had to be made in order to better fulfill our goals. Other

researchers may find the lessons we learned to be useful for

developing their own RTQE interface. For a live demonstration of

the three versions, please see our video supplement.

3.1 Version 1
Previous studies have shown that increasing the level of user

control over query term selection in general seems to improve

search effectiveness [1][25]. For the first version, we designed a

user interface where users could not only select individual words

and compositionally build up phrases, but also retrace their word

selections. In formulating queries, users could in effect “browse”

the search query logs. We facilitated this kind of browsing

through word columns.

Figure 2 shows a sequence of interactions with Phrase Builder

Version 1 (V1) for the intended query “earthquake in hawaii.” In

Figure 2(a), the user has not yet entered any characters into the

textbox. The first column contains suggestions for the first word.

Once a word is put into focus in the first column, the second

column is updated to show suggestions for the second word

conditioned on the first word. V1 animates this update to help

users stay in context. Focused words are marked with a sky blue

border. Since “google” has the focus in the first column, V1

shows all suggestions for the second word, conditioned on

“google” as the first word. In Figure 2(b), the user has typed “e,”

so V1 displays all suggestions in the first column that start with

“e.” The ellipsis represents all suggestions that occur

lexicographically within a word range. For example, in Figure

2(b), the range is between “earthlink” and “ebay.” When the user

shifts the focus to an ellipsis (i.e., “…”), no words are displayed in

the next column. When the user selects the ellipsis by clicking the

„OK‟ button at the center of the d-pad, suggestions between

“earthlink” and “ebay” are displayed in the column, as shown in

Figure 2(c). Notice that word ranges are marked in orange at the

top and bottom of the column. Furthermore, the back button icon

is now shown to the left of the column to allow users to return to

the previous choices.

Each word column is conditioned on selections in the previous

columns. Similar to typing, queries are composed in a left-to-right

fashion. To compose an entire phrase, the user simply moves the

Figure 2. Screenshots of Phrase Builder V1 showing how users can compositionally build query phrases from word columns.

(d)(b)(a) (c) (d)(b)(a) (c)

focus from one word column to the next column on the right by

clicking the right arrow on the d-pad. Once a word is selected, the

column is collapsed to a focused word (Figure 2(d)). If the entire

sequence of focused words is what the user desires, the user just

clicks „OK‟ on the d-pad. This causes the entire phrase to be

pasted into the textbox. To retrace, the user can simply move the

focus to the left, to whichever word column is desired. For

example, if the user wishes to just type “earthquake,” the user can

move left until “earthquake” is highlighted and then click „OK.‟

Finally, the user is never prohibited from inserting new characters

into their queries, which can be performed by changing the focus

to the textbox and placing the cursor wherever desired.

3.1.1 Generating Word Column Suggestions
We now describe how we generate suggestions for the word

columns. For any word column, we only have n word-only slots in

which to place words, and (n+1) open slots in which to place

either words or ellipses. The middle slot always contains the

highest ranked expansion word. For example, because “google” is

the most popular word in the query logs, it is placed in the middle

slot of the first column in Figure 2(a). Above and below the

middle slots are open slots and word-only slots in alternating

fashion.

Our algorithm for filling suggestions in the word columns

proceeds as follows: After placing the highest ranked word in the

middle slot with a focus, we iterate through the k-best words that

have been retrieved from the index and place them in the word-

only slots either before or after the highest ranked word,

depending on lexicographical order. After the word-only slots are

filled, if only one word can fill an open slot, we place the word in

that slot (e.g., “amazon” in the first column in Figure 2(a)).

Otherwise, we place an ellipsis. In actuality, our algorithm for

retrieving k-best words retrieves k-best phrase matches. To

generate the words, we split the phrase matches into words and

place the words into the appropriate columns.

3.1.2 Usability Study & Lessons
We conducted a usability study to evaluate V1 using the “think-

aloud” protocol [26], where participants verbalized their thoughts

about the interface as they entered their own queries as well as

specified queries. Due to space limitations, here we just

summarize the Methods and Results.

Ten participants (5 males and 5 females) from the Seattle

metropolitan area were recruited by a professional contracting

service. Because no screening was conducted for age, the age of

the participants ranged from 42 to 66 with an average of 56.2,

which was unexpectedly higher than the age of our target

audience. In terms of Procedure, we first taught participants the

basics of using a Blackjack Smartphone and then introduced them

to the V1 interface. As the participants interacted with the V1

interface, they voiced aloud their impressions.

In terms of Results, with respect to query formulation, several

participants liked how the interface allowed them to browse what

other people had searched for on the web. They noted how

surprised they were to see certain queries in the logs. Regarding

composition, many participants enjoyed how they could paste all

or part of a query phrase into the textbox by simply clicking the

„OK‟ button on the d-pad. Several participants also enjoyed the

spelling correction aspect of V1, which has also been noted as a

benefit of other RTQE interfaces [11].

On the other hand, participants were less enthusiastic about

entering queries for which they knew their desired terms. Almost

all participants stated that selecting query terms in the word

columns seemed “disruptive.” This observation is consistent with

previous research in which users were more likely to use

interactive query expansion when their information needs were

vague and unarticulated [12][32]. In particular, many participants

found the task of examining suggestions to be cognitively

demanding, which is also consistent with prior research showing

how reluctance to use interactive query expansion may be linked

to the added cognitive load of judging the relevance of suggested

terms [2]. Finally, most participants found it burdensome to keep

track of the word ranges in drilling in and out of an ellipsis. Many

participants also felt that the animation used to splay suggestions

and collapse word columns slowed them down.

3.2 Version 2
Because allowing users to browse the search query logs is not one

of our goals but reducing keystrokes for mobile web queries is, we

decided to re-design our user interface to overcome the drawbacks

participants had noted in the previous usability study. In

particular, we removed all animation, made all open slots into

word-only slots (i.e., no ellipsis and drill-downs), and re-ordered

the word-only slots by popularity from top to bottom. These

changes were all made as an effort to reduce cognitive load.

Figure 3 shows a sequence of interactions with Phrase Builder V2

for the intended query “customer service training.”

Notice that the appearance of V2 is more in the direction of RTQE

interfaces that users are accustomed to on the desktop, namely,

auto-completion. The major difference is that instead of showing

suggestions as whole phrases for selection, individual words can

be selected via the word columns. For example, in Figure 3(a), the

user has typed “cus.” Seeing that the word “customer” has come

Figure 3. Screenshots of Phrase Builder V2 showing word columns without word ranges for drilling down.

(d)(b)(a) (c) (d)(b)(a) (c) (d)(b)(a) (c)

up on top, the user focuses on the word in Figure 3(b) and then

selects the next desired words in Figures 3(c)-(d) by moving right.

Because suggestions are organized into word columns, if the user

decides to remove a word, they can easily retrace by moving left,

just as in the V1 user interface.

In the next section, we discuss the results of a controlled

experiment we conducted assessing V2 against standard auto-

completion, which does not allow individual word selection. Since

the evaluation of the final Phrase Builder user interface utilizes

the same methods and evaluation criteria, we now introduce the

final version and postpone discussion of V2‟s evaluation for

Section 4.

3.3 Version 3
The final user interface can be viewed as a marriage of V2 and

auto-completion, the RTQE interface most common on desktop

search engines. Figure 4 shows a sequence of interactions with

Phrase Builder V3 for the intended query “customer service

training.” As users type characters, a drop-down box appears

showing suggestions for the text-so-far. If they notice the intended

query among the suggestions in the drop-down box, they can use

the d-pad to select it. Contrary to auto-completion on the desktop,

in V3, the focused phrase (highlighted with the sky blue

background) is not automatically added to the textbox. This

difference facilitates individual word selection, which is conveyed

to users by the orange font color and underlining of an individual

word that will be inserted into the textbox if they move right on

the d-pad. The underlined text always matches the text-so-far up

to a word boundary. For example, in Figure 4(b), even though

“customer service” matches “cus*,” only “customer” is colored in

orange and underlined. To further convey to users that the colored

and underlined word will be added to the textbox if they move

right on a selection, we placed a right-arrow icon of the same

color on the far right-hand side of the of the focused phrase

(shown in Figures 4(b)-(d)). We also displayed what word would

show up in the textbox as grayed-out “phantom” text. Note that in

auto-completion, moving right on a selection typically serves no

function. Finally, users select whole phrases in the usual way – by

hitting the „OK‟ button at the center of the d-pad. In short, V3

supports individual word selection in addition to the typical

selection method that is afforded by auto-completion.

Notice that the sequence of word selections in Figure 4 for V3 is

exactly the same as for V2 in Figure 3: After typing “cus,” the

user notices that the word “customer” has appeared on top (Figure

4(a) and moves down into the drop-down box (Figure 4(b)). The

underlined word is then selected by moving right in Figure 4(c).

Henceforth, that word is pinned (i.e., added to the textbox) and the

rest of the suggestions all begin with the pinned text (i.e.,

“customer*”). Pinning is akin to setting a focus on a word in the

word columns of V2 and collapsing to a focused word in V1. In

Figure 4(c), the user finds and pins the next word. Seeing the

intended query among the suggestions in Figure 4(d), the user

simply clicks the „OK‟ button and is done.

4. EVALUATION
In order to assess whether users could easily learn the different

versions of the Phrase Builder user interface and leverage

individual word selection to reduce keystrokes, we conducted two

controlled experiments. In Experiment 1, we tested V2 against

auto-completion (AC) as it functions on the desktop. In

Experiment 2, we tested V3 against both AC and typing. For

typing, we simply turned off all suggestions. In order to create the

AC interface, which is shown in Figure 5, we simply disabled

individual word selection and removed all associated visual cues

(e.g., underlining). AC displays suggestions in exactly the same

way as V3 in Figure 4(a), and uses the same sky blue background

for the focused phrase. Because we expected that users would be

more familiar with suggestions based on prefix matching, we also

disabled infix matching (e.g., britney spears) for AC, V2, and V3.

Furthermore, Phrase Builder V2 in Experiment 1 did not leverage

back-off suggestions simply because we did not conceive of the

techniques described in Section 2.4 until after we created V2. As

such only V3 presented users with back-off suggestions.

4.1 Method

4.1.1 Participants
For Experiment 1, we recruited 18 participants (16 males and 2

females) between the ages of 19 and 52 from the Seattle

metropolitan area by a professional contracting service. The

average age of participants was 35.5. Participants came from a

wide variety of occupational backgrounds. For Experiment 2, we

recruited 12 participants (5 males and 7 females) from the same

demographics as Experiment 1. The average age of participants

Figure 4. Screenshots of Phrase Builder V3 showing word selection integrated into the expansion choices.

(d)(b)(a) (c) (d)(b)(a) (c)

Figure 5. Screenshot of the auto-completion interface.

was 30.4. All participants were compensated for their time.

During recruiting, all participants answered that they were

familiar with the QWERTY layout and could type on a normal

size keyboard without frequently looking at the keys. We also

tried to counter-balance the number of participants who owned a

numeric keypad phone, a QWERTY keyboard phone, and a

touch-only phone. For both experiments, we found that the type of

phone owned by the participants was not statistically significant in

predicting our dependent measures.

4.1.2 Procedure
All participants were first taught the basics of using a Blackjack

smartphone. We then repeated the following procedure for each

RTQE interface. We provided a short tutorial on how to use the

interface and walked them through training stimuli. We presented

participants with target queries on a desktop computer, which they

then had to type into their mobile devices using the interface.

Participants were encouraged to take as much time as necessary to

look at the target queries before starting. We informed the

participants that they would be timed, but that they should not

sacrifice accuracy for speed. We also informed them that they

always had the option of simply typing in the entire target query.

Once the entire target query was entered into the textbox, with or

without assistance from any RTQE interface, participants pressed

a soft-key button on the Blackjack smartphone for „Done‟ and

moved on to the next item. At the end of the session, participants

answered a questionnaire comparing the different interfaces. The

entire session lasted about 1.5 hours.

Note that for entering the target queries, following the

“unconstrained text entry evaluation paradigm” [28], we did not

disable backspace and other error correction mechanisms. In

Experiment 1, we gave participants the option of skipping target

queries, but this occurred in only 1.8% of the data, so we did not

present this option in Experiment 2.

4.1.3 Design
Our primary independent variable was UI. For Experiment 1, we

compared V2 against AC. For Experiment 2, we compared V3

against AC and typing (our control condition). Because Phrase

Builder was designed to be particularly useful when intended

queries only partially matched the suggestions, as our second

independent variable we examined Query Log Presence

(LogPresence): whether a target query could be retrieved as a

complete phrase in the search query logs (Complete) or only

partially (Partial). We hypothesized that both V2 and V3 would

reduce keystrokes more than AC when the LogPresence of the

target query was Partial than when it was Complete.

In short, for Experiment 1, we conducted a 2 (UI) x 2

(LogPresence) within-subjects factorial design experiment, where

participants used both RTQE interfaces in counter-balanced order

for two sets of target queries (see next section). For Experiment 2,

we conducted a 3 (UI) x 2 (LogPresence) experiment. We again

counter-balanced the order of the three UI conditions.

Because our second goal for designing a mobile RTQE interface

is to reduce keystrokes, we decided to directly assess Keystrokes

per Character (KSPC) as our primary dependent variable, which

is computed as:

||

||

T

IS
KSPC 

where |IS| denotes the length of the input stream, including all d-

pad keystrokes as well as backspaces, and |T| denotes the length of

the target query [28]. Although KSPC for the different UI

conditions could have been theoretically calculated for the stimuli,

we decided to measure KSPC in an experimental setting in order

to account for button-pressing mistakes, which are common on

miniature QWERTY keyboard phones. In other words, we wanted

to assess real performance on real devices. Assuming that no

RTQE interface or any predictive text entry method is in place,

participants must type every character of a target query using the

QWERTY keyboard. As such, if participants make no button-

pressing mistakes, the baseline KSPC for a QWERTY phone is 1.

As secondary dependent variables, we also examined the elapsed

Duration for entering target queries as well as two accuracy

metrics: IsCorrect measures whether the final user text matched

the target query, and MSDErrorRate measures error rate as a

function of the minimum string distance (MSD) between two

strings. MSD computes the distance between two strings in terms

of the lowest number of error-correction operations required to

turn one string into the other (see [28] for more details). Turned

into an error rate measure, MSDErrorRate is calculated as:

),(

),(

UTMAX

UTMSD
teMSDErrorRa 

where T denotes the target query, U denotes the user text, and

MSD is the minimal edit distance between T and U.

4.1.4 Stimuli
In order to obtain the target queries for the experiments, we wrote

a script to randomly sample queries from the search query logs of

Live Search Mobile, described in Section 2.3. As discussed

previously, to reduce storage space, we only encoded those

queries which had at least 5K popularity hits. This produced an

encoded index of roughly 122K queries from a base index of over

1 million queries. Because users do not typically use RTQE for

short queries, we constrained our sampling method to select only

queries of length greater than 14 characters, which was the

average query length of the base index. To obtain stimuli

matching the LogPresence conditions, we sampled Complete

queries directly from the encoded index, and Partial queries from

the base index excluding queries in the encoded index. Note that

the Partial queries in this way are by definition out-of-index (i.e.,

not in the encoded index). In sampling the Partial queries, we

selected only queries that contained at least one word which could

be found in the vocabulary of the encoded index.

For Experiment 1, we created 2 stimuli sets of 20 target queries,

and for Experiment 2, we created 3 stimuli sets of 20 target

queries for the different UI conditions. The target queries were

then randomly shuffled. Note that the average character length of

the target queries between the stimuli sets was not found to be

significantly different. We also created training stimuli sets of 8

(for Experiment 1) and 10 (for Experiment 2) target queries,

which we repeatedly used in the experiments for the different UI

conditions during the tutorials.

5. RESULTS

5.1 Experiment 1

5.1.1 Quantitative
In performing descriptive statistics, we immediately noticed an

interesting trend. KSPC and Duration seemed to be decreasing as

participants used V2 and became more familiar with this interface.

This learning effect was not observed for AC, presumably because

participants were already familiar with the interface. We

conducted one-way ANOVAs to examine the relationship

between our dependent variables and two independent variables,

UI and a new variable, ItemOrder. In particular, we divided

ItemOrder into Beginning or End, depending on whether a stimuli

item (target query) occurred among the first 10 or the last 10

items. For KSPC, we found a main effect for ItemOrder

(F1,714=6.74, p<.05) and an interaction effect between ItemOrder

and UI (F1,714=4.99, p<.05). For Duration, we found a main effect

for UI (F1,714=16.19, p<.001), ItemOrder (F1,714=9.35, p<.01), as

well as an interaction effect between the two (F1,714=6.51, p<.05).

Because these results imply that there was a learning effect for

V2, we decided to utilize data from only the last 10 items of each

stimuli set in order to explore how well V2 could reduce

keystrokes once users became accustomed to the interface.

For our primary dependent variable, KSPC, we found a significant

main effect for UI (F1,192=6.13, p<.05), with V2 exhibiting lower

KSPC than AC, as shown in Figure 6(a). We also found a

significant interaction effect between UI and LogPresence

(F1,192=31.16, p<.001). In particular, AC displayed lower KSPC

(µ=.67, σ=.03) than V2 (µ=.77, σ=.03) for Complete queries, most

likely because V2 requires participants to select every word in the

target query, in contrast to the full query selection method of AC

(and V3, as we discuss later). On the other hand, just as we

hypothesized, for Partial queries, V2 (µ=.86, σ=.04) had lower

KSPC than AC (µ=1.10, σ=.03), which, being greater than 1.0,

was as bad as typing with occasional errors – this finding is

consistent with [20] which found that users often ignored the

benefit of accepting a suggestion, presumably because it requires

less cognitive load.

Among our secondary dependent variables, although we did not

find a significant main effect of UI on Duration, we did find main

effects for the accuracy metrics IsCorrect (F1,192=6.83, p<.05) and

MSDErrorRate (F1,192=5.66, p<.05). Overall, V2 clearly stood out

for its higher IsCorrect accuracy (Figure 6(b)) and lower

MSDErrorRate (Figure 6(c)).

5.1.2 Qualitative
After participants finished the study, we asked them to decide

which interface they preferred overall. 8 participants chose V2

while 10 participants chose AC. When asked which interface they

perceived to be the fastest, 13 out of 18 participants answered AC,

despite the fact that V2 had lower KSPC and there was no

significant difference in Duration. In follow-up discussions, we

learned that participants who preferred AC did so primarily

because of familiarity and perceived ease-of-use (which is related

to familiarity). On the other hand, participants who preferred V2

did so because it “seemed to require less typing.” Some

participants even mentioned that they thought they would be more

efficient over time with V2. The qualitative feedback we received

from Experiment 1 motivated us to the design V3 as a marriage

between V2 and AC. In short, we aimed to capture the familiarity

and ease-of-use of AC but with the extra functionality of

individual word selection.

5.1.3 Discussion of Experiment 1
Although V2 demonstrated lower KSPC than AC, and allowed for

greater accuracy in terms of both IsCorrect and MSDErrorRate, it

had two major flaws: 1) participants did not overwhelmingly

prefer V2, due primarily to their greater familiarity with AC, and

2) AC exhibited lower KSPC for Complete queries. Although the

first flaw was reason enough for us to re-design V2, the second

flaw gave us concern. This is because in our experiment, we had

an equal number of Complete and Partial target queries, but in

real usage, it is likely that users will be intending mostly Complete

queries – since that is how these queries become popular. As such,

in formulating a new design for V3, we needed to make sure that

Phrase Builder was as good as AC on Complete queries.

5.2 Experiment 2

5.2.1 Quantitative
Having experienced an ItemOrder effect in Experiment 1, we

decided to spend more time teaching participants about the

different interfaces in our tutorials. Hence, we slightly increased

the number of training stimuli from 8 to 10 target queries. As a

result, for Experiment 2, we did not find any statistically

significant effect of ItemOrder on our dependent variables nor did

we find any significant interaction effects with UI, as we did in

Experiment 1.

For our primary dependent variable, KSPC, we again found a

significant main effect for UI (F1.76,205.7=84.94, p<.001)3 with V3

(µ=.80, σ=.02) exhibiting lower KSPC than both AC (µ=.93,

σ=.02) and typing (µ=1.12, σ=.02). Post-hoc, pairwise

3 Because the sphericity assumption had been violated for UI

(χ2(2)=17.17, p<.001), we corrected the degrees of freedom

(1.76, 205.7) using the Greenhouse-Geisser estimates (ε=.88).

Figure 6. (a) Mean KSPC for AC and Phrase Builder V2. (b) Mean IsCorrect for AC and V2. (c) Mean MSDErrorRate for AC and

V2. Error bars represent standard errors about the mean.

comparisons revealed that all three of the UI conditions were

significantly different from each other (all p<.001). We also found

a main effect for LogPresence (F1,117=152.58, p<.001), as well as

an interaction effect with UI (F2,234=49.25, p<.001). Figure 7

shows the mean KSPC for each user interface broken down by

whether the LogPresence was Complete or Partial. As expected,

typing, our baseline, showed no significant difference in KSPC

between Complete and Partial queries. Interestingly, AC did not

show significantly lower KSPC than typing for Partial queries,

but V3 did (p<.001). We were pleased to see that for even

Complete queries, V3 exhibited lower KSPC than AC (p<.05).

Finally, unlike Experiment 1, we did not find any significant

effects for our secondary dependent variables. In particular, we

lost our previous main effects for IsCorrect and MSDErrorRate.

5.2.2 Qualitative
After participants finished the study, we asked them to rank the

interfaces in order of preference. 10 out of 12 participants rated

V3 as their top choice. V3 was significantly preferred over AC, as

revealed in a non-parametric Kruskal-Wallis test (χ2(2)=16.29,

p<.001) and a follow-up pair-wise comparison. We also asked

participants to rank the interfaces in terms of which they

perceived to be the fastest. In 10 out 12 cases, V3 was rated as the

fastest. The difference between V3 and AC was again significant

(χ2(2)=19.20, p<.001). During discussions, the most common

reason participants gave for their preference was that V3 seemed

just like AC except more efficient.

5.2.3 Discussion of Experiment 2
In designing V3, we deliberately assayed to capture the familiarity

of AC. In fact, if the user never moves right on the d-pad to pin

words, the functionality of V3 is equivalent to AC. However, V3

has more functionality than AC; it supports individual word

selection to facilitate completion of Partial queries. Because

participants recognized the added benefit of V3, they ranked it

higher in user preference to AC. Interestingly, perceived V3 to be

faster than AC, despite that fact that there was no statistically

significant difference in Duration between the two.

In terms of KSPC, V3 outperformed AC as well as the typing

baseline. For Partial queries, we hypothesized that this would be

the case. However, for Complete queries, the difference came as a

pleasant surprise. One possible explanation is that by underlining

the currently focused word, V3 may be assisting recognition of

target queries when they appear among the suggestions. Overall,

the difference between AC and V3 was greater for Partial than

Complete queries. This may have to do with the availability of

back-off suggestions, though teasing apart the effect of back-off

suggestions requires a separate study. We consider this future

research.

5.3 Discussion
Although both V2 and V3 significantly reduced keystrokes, as

measured by KSPC, participants perceived V3 to be faster than

AC but not V2. The reason for this perception is unclear, though it

may relate to participants realizing that V3 enables the same kind

of interaction as AC except with more functionality – particularly

for Partial queries.

Having found significant main effects for the two accuracy

measures, IsCorrect and MSDErrorRate, in Experiment 1 but not

in Experiment 2, we investigated how this might have happened.

Interestingly, for Experiment 2, we noticed that participants in

general made very few errors. In fact, all three interfaces had

mean accuracies between the ranges of .94 and .95, which is quite

high. With longer tutorials, more stimuli, and a similar look-and-

feel between AC and V3, participants may have just received

more practice to get better at using AC on the mobile device.

Another possible explanation relates to age. The average and

median ages for Experiment 1 were 36 and 35 respectively

whereas for Experiment 2, they were 30 and 26. It could be that

we had younger participants in Experiment 2 who were more

accustomed to typing on mobile devices, and as such made less

errors.

6. Conclusion and Future Directions
In this paper, we introduced Phrase Builder, an RTQE interface

that reduces keystrokes by facilitating the selection of individual

words in addition to whole phrases, and by leveraging back-off

query techniques to offer suggestions for out-of-index queries. We

described how we implemented a small memory footprint index

and retrieval algorithm as well as the back-off suggestions, and

then discussed lessons learned from three versions of the Phrase

Builder user interface.

Ultimately, for the purposes of productizing an easy-to-use mobile

RTQE interface that can reduce keystrokes, we settled on V3.

Although it is possible that V2 may facilitate higher accuracy for

entering intended queries, the lack of familiarity with the interface

and subsequently lack of user preference deterred us from

productizing it. However, V2 may have potential outside of

RTQE as a general text entry tool. Finally, although V1 had a

dynamic user interface for browsing search query logs, users

found it unhelpful for entering intended queries. Note that the

final product version of Phrase Builder (Figure 1) is not identical

to V3; in particular, the phantom text feature of V3 was removed

due to lack of testing resources.

With regards to future research, one pressing direction is to

conduct a more thorough analysis of the benefits of our back-off

query techniques for generating relevant out-of-index suggestions

that are in-vocabulary. As discussed previously, incorporating

semantic and syntactic information in selecting words to replace

with wildcards for generating back-off queries also seems

promising.

Figure 7. Mean KSPC for AC, Phrase Builder V3, and typing

separated into Partial and Complete queries (LogPresence).

Error bars represent standard errors about the mean.

With regards to the user interface, because our experiments were

conducted in a laboratory setting, it will be interesting to see how

users perceive the shipped Phrase Builder in real mobile

scenarios. Finally, we plan to investigate how to best customize

Phrase Builder for touch-only mobile devices.

7. REFERENCES
[1] Beaulieu, M. 1997. Experiments with interfaces to sup-port

query expansion. Jour. of Documentation, 53(1), 8-19.

[2] Beaulieu, M., Do. T., Payne, A., & Jones, S. 1997.

ENQUIRE Okapi Project. British Library Research and

Innovation Report 17.

[3] Bentley, L. 1975. Multidimensional binary search trees used

for associative searching. Communications of the ACM,

18(9), 509-517.

[4] Church, K. & Smyth, B., 2007. Mobile content enrichment.

Proc. of IUI, 112-121.

[5] Church, K., Smyth, B., Cotter, P. & Bradley, K. 2007.

Mobile information access: A study of emerging search

behavior on the mobile Internet. ACM Transactions on the

Web, 1(1), 1-38.

[6] Church, K., Thiesson, B., & Ragno, R. 2007. K-best suffix

arrays. Proc. of NAACL-HLT, companion volume, 17-20.

[7] Church, K., Keane, M.T., & Smyth, B. 2005. Towards more

intelligent mobile search. Proc. of IJCAI, 1675-1676.

[8] Church, K. & Thiesson, B. 2005. The Wild Thing! Proc. of

ACL, 93-96.

[9] Croft, W.B. & Thompson, R.H. 1987. I3R: A new approach

to the design of document retrieval systems. Jour. of the

American Society for Information Science, 38(6), 389-404.

[10] Cui, H., Wen, R.R., Nie, J.Y. & Ma, W. 2002. Probabilistic

query expansion using query logs. Proc. of WWW, 325-332.

[11] Efthimiadis, E.N. 1996. Query expansion. Annual Review of

Information Systems and Technology, 31, 121-187.

[12] Fowkes, H. & Beaulieu, M. 2000. Interactive searching

behavior: Okapi experiment for TREC-8. Proc. of the IRSG

2000 Colloquium on IR Research.

[13] http://www.google.com

[14] http://www.piccolo2d.org

[15] http://www.t9.com

[16] http://www.yahoo.com

[17] Ipsos Insight. 2006. Mobile phones could soon rival the PC

as world‟s dominant Internet platform.

http://www.ipsosna.com/news/pressrelease.cfm?id=3049,

April 2006. Accessed June 2009.

[18] Jelinek, F. 1997. Statistical methods for speech recognition.

Cambridge, MA: MIT Press

[19] Jones, M., Buchanan, G., & Thimbleby, H. 2002. Sorting out

searching on small screen devices, Proc. of Mobile HCI, 81-

94.

[20] Kamvar, M. & Baluja, S. 2008. Query suggestions for mobile

search: Understanding usage patterns. Proc. of CHI, 1013-

1016.

[21] Kamvar, M. & Baluja, S. 2006. A large scale study of

wireless search behavior: Google mobile search. Proc. of

CHI, 701-709.

[22] Kamvar, M. & Baluja, S. 2006. The role of context in query

input: Using contexual signals to complete queries on mobile

devices. Proc. of Mobile HCI, 405-412.

[23] Kang, T. 2008. Value share: global handset vendor financial

metrics in Q1 2008. Strategy Analytics. Dated: 06-01-2008.

[24] Katz, S. 1987. Estimation of probabilities from sparse data

for the language model component of a speech recogniser.

IEEE Transactions on Acoustics, Speech, and Signal

Processing, 35(3), 400–401.

[25] Koenenman, J. & Belkin, N.J. 1996. A case for inter-action:

A study of interactive information retrieval behavior and

effectiveness. Proc. of CHI, 205-212.

[26] Lewis, C., & Rieman, J. 1993. Task-Centered User Interface

Design: A Practical Introduction. Distributed via anonymous

ftp (ftp.cs.colorado.edu).

[27] MacKenzie, I., Kober, H., Smith, D., Jones, T. & Skepner, E.

2001 LetterWise: Prefix-based disambiguation for mobile

text input. Proc. of UIST, 111-120.

[28] MacKenzie, I., & Tanaka-Ishii, K. 2007. Text entry systems:

Mobility, accessibility, universality. San Francisco: Morgan

Kaufmann Publishers.

[29] Manber, U. & Myers, G. 1990. Suffix arrays: A new method

for on-line string searches, Proc. of SODA, 319-327.

[30] Masui, T. 1999. POBox: An efficient text input method for

handheld and ubiquitous computers. H. Gellersen, Ed.

Lecture Notes in Computer Science, 1707, 288-300.

[31] Paek, T., Thiesson, B., Ju, Y.C., & Lee, B. 2008. Search

Vox: Leveraging multimodal refinement and partial

knowledge for mobile voice search. Proc. of UIST, 141-150.

[32] White, R. & Marchionini, G. 2007. Examining the

effectiveness of real-time query expansion. Information

Processing and Management, 43(3), 685-704.

[33] Wigdor, D. & Balakrishnan, R. 2004. A comparison of

consecutive and concurrent input text entry techniques for

mobile phones. Proc. of CHI, 81-88.

[34] Zhang, Z. & Nasraoui, O. 2006. Mining search engine query

logs for query recommendations. Proc. of WWW, 1039-1040.

http://www.google.com/
http://www.piccolo2d.org/
http://www.t9.com/
http://www.yahoo.com/

