
Mobile Implementation of a Web 3D Carousel with Touch
Input

Christoffer Björkskog, Giulio
Jacucci, Bruno Lorentin

 Helsinki Institute for Information
Technology HIIT, Helsinki University

for Technology TKK
P.O. Box 9800, FIN-02015 TKK,

Finland
+358 9 4511

firstname.lastname@hiit.fi

Luciano Gamberini
HTLab – Dep. Of General Psychology,

University of Padova
Via Venezia, 8

35131 Padova ITALY
+ (39) 049 8277425

luciano.gamberini@unipd.it

ABSTRACT
Mobile devices such as the iPhone provide state of the art
interaction capabilities also for web browser applications. Our
mobile development is targeted to a Energy Awareness
application that provides playful access to detailed and realtime
information on energy consumption of appliances of a household.
Using the available Safari Browser that adopts W3C web
standards we demonstrate the implementation of a 3D carousel
giving access to cards on a web page where each card gives access
to information on one appliance. The carousel can be browsed
using the multitouch capability of the iPhone. We describe the
programming approach and discuss the lesson learned in
developing the touch interaction with the carousel.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User Interfaces –
Input devices and strategies, Interaction styles.

General Terms

Algorithms, Documentation, Design, Experimentation,
Standardization, Languages.

Keywords

HCI, Mobile device, iPhone, MultiTouch interaction, 3D
interface, carousel, W3C, Javascript, CSS3, XHTML, WebKit
1. INTRODUCTION
Mobile devices are increasing powerful in being able to provide
state of the art interaction modalities and media processing. For
example mobile phones have evolved to the extent that
manufacturers do not call them phones anymore. Features include
cameras with ever increasing resolution for picture and video
capture, internet connectivity (based on operators network or
WLAN), near field communication as RFID (Radio Frequency
Identification), a variety of sensors like accelerators, GPS (Global
Positioning System), and through the bluetooth interface virtually
any sensor can be used in applications furthermore the bluetooth
itself being a sensor that is able to scan and sense the presence of
other devices.

Recently devices like the iPhone also provide intuitive user
interaction like multitouch making the use of applications like

maps and web browsing much more compelling.

Until recently mobile applications have been developed mostly
through with “native” languages (for example C++ for Symbian),
or other higher level languages like Java as these were the only
way to be able to do graphic and image processing or access
resources on the phone.

Now mobile devices are delivering browsers that not only give
access to the interactive features of the phone (see Nokia Widget
platform and iPhone) but that also provide state of the art support
as browser as in the case of the Safari in the iPhone that includes
CSS3 with 3D support not yet included as a standard.
Web application development has a variety of advantages and in
this paper we show how to implement an advanced interface using
the standard web browser Safari on the iPhone.
Our development aimed at an Energy Awareness application that
delivers information on the current consumptions of a variety of
appliances in a household. We were interested in a platform that
provided:

 • Playfulness: the platform must allow an interactive and
playful experience. It is really important to offer to user an
engaging way to use the application.

• Portability: in order to be accessible to a large panel of
user, the application has o be as portable as possible. The diversity
of the existing mobile platforms makes this point difficult to
reach.

• Was easy to code: we tried to find solution to avoid
spending too much time in learning complex programming code
in order to concentrate our efforts in building very high quality
functionalities.

• Possibility to handle graphics and rich multimodal
interaction.

We present a mobile web 3D carousel interface build on the
iPhone using Web technologies such as XHTML, CSS and
JavaScript. It also utilizes WebKit’s implementations to CSS3
proposals that enable hardware accelerated 3D positioning,
transformation and animation of elements. The interface takes
advantage of the multitouch input method provided by the iPhone.

2. RELATED WORK
The idea to adopt a carousel as a closed-loop menu to select item
is not new at all. The ones of us that were playing video games in Copyright is held by the author/owner(s).

MobileHCI’09, September 15 - 18, 2009, Bonn, Germany.
ACM 978-1-60558-281-8.

the 80s on the Neo Geo arcade machine might remember that a lot
of these games were using such a carousel to ask the best players
to enter their initials and appear in the high scores screen. An
example of more recent carousel can be seen in Microsoft’s
Encarta 2004. As Wang et al. [1] explained, the carousel design
provides straightforward and great looking layout, its mechanism
is easy to understand, the 3D visualization enables users to easily
spot the selected item and the rotation effect is engaging.

Such models are now widely used in webpages in order to display
fancy image galleries or menus. With recent browsers it is
possible to use different tools and languages to implement them
such as JavaScript[2], Adobe Flash[3] or Microsoft Silverlight[4].
But even if these solutions are great options to display our 3D
carousel on desktop browser, it is not suitable when we use
browsers on mobile devices due to technical restrictions. On the
iPhone, using 100% “classic” JavaScript would be way too slow
and Flash and Silverlight are not even supported by Safari for
iPhone. In addition, these examples do not include any touch and
movement recognition.

3D carousels have also been used on multi-touch installations.
The Citywall[5] project used two 3D rings (one vertical and the
other horizontal) to allow users to represent a “time travel” and to
display pictures taken in the specified period of time.
Fingertapps[6] provides a software platform for delivering
commercial multi-touch solutions. They have implemented for
Lexus a 3D carousel menu, very close to the one we did, to
navigate between the different options to customize a virtual car.
Once again the technologies used by these installations cannot be
used on the iPhone.

Even if some applications on the iPhone also have components
that can be described as carousel like the vertical rotating menu
that is used to set up the alarm clock or the timer, they are part of
native applications. As we did not want users to have to install
anything on their mobile phone, we could not use this solution
either.

3. IMPLEMENTATION
The Carousel is part of an Energy Awareness application that
displays detailed power consumption for each appliance.
Therefore each card in the carousel is representing an appliance or
electrical device in the house. In addition the card can be clicked
and turns to offer additional information and functionality for the
given appliance.

The user interface and the 3D carousel component runs in the
client browser powered by JavaScript.
Each card has a front side and a backside. The amount of cards
created for the menu varies in this application based on data that is
fetched from a server.
In the developed application, the cards represent electrical
appliances in the household. When a card is tapped, it flips around
and shows a menu for that device.
When the circle is initialized, each card is created and positioned
standing in an elliptical circle level to the plane. They are
distributed along the circumference of the circle with their front
facing the user. Each card is a div element consisting of two child
div elements. They are positioned in the same position, but one of
them is rotated 180 degrees around the y-axis. This way each card

has a backside and a frontside. Their container has the impression
of being a two faced card.

3.1 Evolution of the carousel implementation
The carousel is elliptical in order to allow all cards to fit inside the
screen. The first prototype was, however, a round circle with one
sided cards facing outwards from the center (see figure 1). The
rotation was smooth since there was only one transformation
needed to rotate the circle. That was to rotate the element that
contained all the cards. We realized that this approach had
drawbacks. It did not match the design and the content of the
cards on the edges were not visible.

We then implemented a prototype that had cards that faced the
user all the time (see Figure 2). This approach, however, needed
several transformations when users interacted with it. Each card
needed to be moved into a new position in the x,z plane. A
function was created to calculate a card position based on the
current rotation of the circle. A major efficiency problem was
discovered; On the iPhone simulator the flow and rotation of the
circle was smooth. On the iPhone, however, it was slow. The
problem was that for each pixel the finger moved over the
interface, the cards positions were updated. When we set that the
finger must move ten pixels before an update was triggered, the
interface was responsive on the iPhone too, while still being
smooth in its rotation.

Figure 1. The first prototype with the cards facing outward
inside a container that could be rotated.

3.2 Touch interaction with the Carousel
The first prototypes registered only the fingers movements along
the x-axis. If you moved your finger to the left, the circle rotated
clockwise, if the user moved the finger to the right, it rotated
counter-clockwise. The cards appear larger the closer to the
viewport they are, so most of the area on the screen consists of
cards that are near. When the finger is above a card that is close,
this interaction seemed intuitive. But then we noticed that users
tried to keep their finger on a card and “follow it around”. They
tried to rotate the circle by performing circular movements with
the finger on one card. The problem was, that when the card they
had their finger on came to the backside of the circle, the finger
would move in the opposite direction in order to continue in a

clockwise movement. When the user then changed the direction,
the ring started to rotate the other way.

The first solution to this problem was to define a point along the
y-axis (the top edge of the card closest to the user), that if the
finger is under that and moves towards the left the circle rotates
clockwise, and counter-clockwise if the finger is above that point.
It was now possible to move the finger in a circular motion and
the carousel rotated in a similar fashion.

Figure 2. Later prototypes had cards facing the user where
the positions of the cards change as the user rotates the

carousel. When a card is tapped, it flips around and you can
access more content on the backside.

The problem was now that when the finger was near the left and
right edges, the rotation was not accurate in relation to the finger’s
movements. If the finger moved in a circular motion, it would
travel along the y-axis near the left and right edges and not so
much along the x-axis that was used to monitor the input. The
result of this was that the circle rotated in a “jumpy” fashion,
where the speed of the rotation would alternate between slow and
fast.

In order to give the interaction a natural feel, we calculated what
the fingers angle in relation to the center of the circle was and set
the new angle of the circle in relation to that. We now took the
position of the finger both along the x- and y-axis into
consideration. This required us to have the movement threshold to
be 10 px in either x or y direction.

The unsolved problem at the time of writing is to map the fingers
position and rotate the circle so that the same card sticks to the

finger at the same position during rotation. Now when the finger
moves, the card you initially had your finger on is not fixed to
your finger during rotation.

3.3 Web Standards
The application uses vendor implementations for certain W3C
CSS3 suggestions [9]. These are transition-property, transition-
duration, transform, transform-style, animation-name, animation-
duration, animation-iteration-count, animation-timing-function,
backface-visibility, perspective, perspective-origin and @-
keyframes [x2, x4, x5]. In order for a suggestion to become a
recommendation, at lest two browsers need to implement the
features [12]. When browsers implement these rules, they prepend
the names of the rules with a prefix. The rule transform, becomes
-webkit-transform as a WebKit implementation.

In order to enable 3D positioning of HTML elements, their
container needs to have the CSS3 attribute transform-style to
preserve-3d instead of the default value flat [7]. If the transform
style is flat, all children of the element are rendered on its surface.
If the transform style is preserve-3d, it is possible to adjust its
children’s position in 3d space and rotate them in all three
dimensions.

An elements backface is by default visible. If you rotate that
element so that its backside is towards the viewer, the content of
the element is visible but mirrored. If you set the backface-
visibility CSS3 attribute to hidden, the element becomes invisible
when looked from behind. A two faced card can be created with
two elements that have their back face visibility hidden, and one is
rotated 180 degrees around the y-axis but positioned at the same
place. If their container is rotated, it gives the impression of
rotating a card with two sides.

4. Conclusions
In our development for a energy awareness application we looked
for a platform that provides playfulness, portability and rich
interaction (modalities and graphics).

Playfulness. The iPhone represents a very innovative
interface. The multi-touch screen, the accelerometer and all the
others features offered by this platform reflect a lot of playfully
interaction, new interface concepts and engaging way to handle it.
In addition, Safari for iPhone supports CSS3, which allows using
very smooth transition effect on webpage elements in order to
have a pleasant and attractive interface. Thus, we could avoid
having a too “common” webpage-like look for our application.

Portability. As our application will be web pages, it could be
displayed on any browser. But we will have to implement slightly
different version for the iPhone and for the others browsers (like
desktop browser) as we will have to handle different viewport and
as desktop browser don’t support CSS3 yet. It will be possible by
using conditional CSS. In addition all the iPhone-specific
application implementation will be suitable for he latest model of
iPod touch, which represents a large number of appliances.

Rich interaction through modalities and graphics. Using
HTML Canvas, it becomes possible to handle graphics with only
HTML and Javascript, in 2D or 3D. The Safari for iPhone’s
webkit also allows using the multi-touch screen events to interact
with webpages.

The carousel is implemented using emerging web standards
without any browser plugins. The interface serves as an example

of what will be possible to implement in future web browsers. It
will be interesting to see what kind of web based plugin-free user
interface components we will see implemented as the standards
for CSS evolve and browsers follow the recommendations.

We aim at contributing to anticipate the deployment of rich
multimodal applications on mobile devices that are built on web
technologies. These provide a variety of advantages as they are
fast to implement, are portable and are increasingly rich in
interaction functionality.

On the other hand web applications do not give the same
performance and quality of a native application and provide
restricted functionality.

5. REFERENCES
[1] Shen, Y., Ong, S. K., and Nee, A. Y. 2008. Collaborative

design in 3D space. In Proceedings of the 7th ACM
SIGGRAPH international Conference on Virtual-Reality
Continuum and Its Applications in industry (Singapore,
December 08 - 09, 2008). VRCAI '08. ACM, New York,
NY, 1-6. DOI= http://doi.acm.org/10.1145/1477862.1477900

[2] Carousel.us : a JavaScript 3D Carousel :
http://www.piksite.com/carousel.us/carousel.us.php

[3] Carousel 3D Slideshow – demo 2,
http://www.paulvanroekel.nl/picasa/carouseldemo2/

[4] VectorForm’s Silverlight 2.0 Carousel,
http://www.vectorform.com/silverlight/silverlight2/ImageCar
ousel/

[5] Peltonen, P., Kurvinen, E., Salovaara, A., Jacucci, G.,
Ilmonen, T., Evans, J., Oulasvirta, A., and Saarikko, P. 2008.
It's Mine, Don't Touch!: interactions at a large multi-touch
display in a city centre. In Proceeding of the Twenty-Sixth
Annual SIGCHI Conference on Human Factors in
Computing Systems (Florence, Italy, April 05 - 10, 2008).
CHI '08. ACM, New York, NY, 1285-1294. DOI=
http://doi.acm.org/10.1145/1357054.1357255

[6] FingerTapps, Interactive Show Room Display – Lexus.
(http://www.fingertapps.com/default.aspx?pagename=Showc
ase), 2009

[7] Apple Inc., 2009. Safari CSS Reference.
[8] W3C, CSS Transition Module Level 3

(http://dev.w3.org/csswg/css3-transitions/), 2004
[9] W3C, CSS3 mudle: Synax. (http://www.w3.org/TR/css3-

syntax/#vendor-specific), 2009
[10] W3C, CSS 3D Transforms Module Level 3.

(http://dev.w3.org/csswg/css3-3d-transforms/), 2009

[11] W3C, CSS Animations Module Level 3.
(http://dev.w3.org/csswg/css3-animations/), 2009

[12] CSS3.info, Vendor specific extensions to CSS3.
(http://www.css3.info/vendor-specific-extensions-to-css3/),
2007

