
Minimizing Mobile Phone Disruption via Smart Profile
Management

Amnon Dekel
The Selim and Rachel Benin

School of Computer Science and
Engineering,

The Hebrew University of Jerusalem
+972-54-813-8160

amnoid@cs.huji.ac.il

Dan Nacht
The Selim and Rachel Benin

School of Computer Science and
Engineering,

The Hebrew University of Jerusalem
+972-54-734-3534

dan.nacht@mail.huji.ac.il

Scott Kirkpatrick
The Selim and Rachel Benin

School of Computer Science and
Engineering,

The Hebrew University of Jerusalem
+972-2-658-5838

kirk@cs.huji.ac.il

ABSTRACT

In this paper, we describe the Smart Profile Management

application that was designed to help minimize mobile phone

disruptions. The system achieves the goal using a machine

learning based algorithm that switches the phone profile

automatically. A prototype was developed in Python for S60 and

an informal usability test was run for a period of 7 days. Results

show that a large proportion of profile suggestion changes were

accepted by subjects, suggesting that such an application can in

fact lower disruptions.

Categories and Subject Descriptors

[H.5.2 User Interfaces]: Interaction styles, User-centered design

General Terms

Algorithms, Design, Human Factors.

Keywords

Mobile phones, profile management, context based computing,

smart interfaces, minimizing disruptions.

1. INTRODUCTION
The mobile phone has become the most ubiquitous user operated

electronic device in history. With the growing power of small

footprint low power processors the functionality of mobile phones

has grown to enable people to carry a phone, a full featured PDA,

an audio recorder, a music player, a high resolution photo and

video camera, a photo and video viewer, a powerful web browser

and a computer gaming console in their pockets, all in one small

device. Coupled with online contact and calendar management

systems that the phone can interface with, people can have access

to and manage most of their lives through the small window of

their mobile phone. But this explosion of functionality and fusion

of services comes at a price – people are finding themselves

struggling with more complicated phone interfaces as well as

frequent disruptions from incoming phones calls, SMS, MMS and

WAP push messages, RSS feeds, email notifications and calendar

alarms.

1.1 Mobile Phones as Disruptive Devices
As stated above, since the phone has become capable of being the

hub of a person’s informational life, it has also become a device

that too many a time disrupts a person in the middle of doing

something. In the past this disruption came from incoming phone

calls and preset alarms. But with all the information services that

the mobile phone is interfaced to today, one can be disrupted more

than ten times an hour1. If the user finds this useful then so be it -

but in many cases people find these disruptions to be annoying,

and would be happy to minimize the phone’s potential for

disruption in any way they can.

1.2 Profile Management on mobile phones
One useful feature that has developed over the years is a phone

profile manager. This program allows a user to manage the

behavior of the phone in specific situations. Standard profiles

include "general", "silent", "meeting", "outdoor" and "pager". In

each of these, the user can control how loud the phone will ring

(from maximum loudness to silent), how many times it will ring

(from none, to endless), the ring tone it will use when ringing and

whether the phone will vibrate when ringing, in addition to

additional second level characteristics. Some systems even allow

a person to set a timer for a profile and have it revert to a previous

profile when the time has passed. Although profile managers exist

on many phones, people tend to use them infrequently or in a very

simple fashion - for example manually switching to meeting or

silent profiles. The iPhone, which represents a new generation of

user experience and usability in mobile phones, has taken this into

consideration and has only two profiles (silent or normal) which is

activated by a physical switch. But when manually configuring

profiles, an altogether too frequent problem is forgetting to change

the profile back to “normal”, general” or “outdoor”, with the

subsequent problem of missing incoming phone calls.

1.3 Automatic Profile Changing
Although we have not found any published research into such

systems, there are a few commercial applications (Handy Profiles

for S60 [5], Photo Contacts Pro 5 [8]) that can automatically

1 In our study a phone was synched to Google calendar which sent

out SMS reminders. This was in addition to other incoming

notifications from friends and email.

Copyright is held by the author/owner(s).

MobileHCI09, September 15 - 18, 2009, Bonn, Germany.
ACM 978-1-60558-281-8/09/09.

switch profiles depending on a calendar entry, the time of day, or

even the day itself. Although such programs go a long way to

solving the manual profile setting problem, they rely on a simple

model that matches time to profiles and cannot deal with special

cases or learn from continued use by the user.

We identify three methods to develop such systems: Simple

Middleware applications that switch profiles automatically (as

used in the commercial examples above), Rule Based Systems

where a system of configurable, flexible pre-defined rules changes

the active profile, and Machine Learning Based Systems - the

most sophisticated solution - where a machine learning algorithm

is used to select the active profile. The application reported here

implements the latter solution: a machine learning module, which

is constantly adapting itself to its specific user needs. This

application is an enhancement of a previous version of our Smart

Profile Management application, where a flexible rule-based

system was used to determine the required profile.

2. THE SMART PROFILE MANAGER
Our smart profile manager application is part of the Mobile-

Smarts project at the School of Engineering and Computer

Science at the Hebrew University Jerusalem. The Smart Profile

Manager is a machine learning based application for Symbian S60

that constantly learns its user profile selection pattern online, and

offers to change profiles depending on the various features learnt

(as specified in section 2.1.2). The system uses the K nearest

neighbor algorithm, and supports all standard profiles ("general",

"silent", "meeting", "outdoor" and "pager").

2.1 Technical Description
The program was developed with Python for S60 [7] on a Nokia

N95. We decided to use Python to develop the application

because it enables real rapid prototyping of mobile applications.

Having said that, there are also disadvantages to developing with

Python S60, such as a limited set of OS access commands, which

forced us to rely on external libraries. An example of such a

library that we used is Xprofile, a module that was developed by

Cyke64 [1] (a Nokia forum champion), which enables switching

the active phone profile. Another serious disadvantage of

developing with Python is the lack of event notification (i.e. our

software cannot be triggered by OS events when a user adds

appointments, changes the active profile, etc).

2.1.1 Previous Work
The previous version of our application implemented a rule-based

system which changed the active phone profile according to

various parameters as described in Table 1. The system was

flexible and adjustable (allowing fine-tuning of the various

parameters), however it suffered from the disadvantages

mentioned in section 1.3.

2.1.2 kNN Machine Learning Algorithm:
The algorithm we use in the current application version for

choosing the appropriate active profile is k-nearest neighbor

(kNN), which is one of the most fundamental and simple

classification methods. The k-nearest-neighbor classifier is

commonly based on the Euclidean distance between a test sample

and the specified training examples. The training examples are

vectors in a multidimensional feature space. The training phase of

the algorithm consists only of storing the feature vectors and class

labels of the training samples. In the actual classification phase,

the test sample (whose class is not known) is represented as a

vector in the feature space. Distances from the new vector to all

Table 1: Summary of Previous System Rule Parameters

Context Description Use case example

Time of

the Day

Changes related to

the time of the day

Reverting from Silent to

General mode if the user

appears to have forgotten

switching back after N hours

Phone's

Database

Events appearing in

the phone's

calendar, such as

appointments

Switching to Meeting when a

meeting starts, and back to the

previously active profile

when it ends

Usage

History

Following user

behavioral patterns

Switching to a certain profile

which the user constantly

selected over a period of time

(e.g. Outdoor every Monday

at 10:00AM, and Pager

everyday between 4:00PM

and 4:30 PM)

stored vectors are computed and k closest samples are selected.

The actual classification of the object is then determined

according to the most common label amongst its k nearest

neighbors.

2.1.3 Characterizing the Vector
The current version of the application uses the following

information for the example vectors:

 Day of week

 Time of day

 Current calendar record

 Active profile

The reason for this limited feature set is our desire to "keep it

simple" for the proof of concept; however, the above feature set

can later be extended to contain additional information such as

geo location, cell information and even accelerometer data about

how the phone is being moved (or not moved).

2.1.4 Fuzzy Classification
For analyzing the phone's event database, we converted an

objectively measurable parameter into a subjective "category

membership", which is used for classification. That is, the

software reads the content of the current calendar record (if it

exists), and looks for pre-defined words, which help associate that

event to a certain category: "jogging", for example, will associate

the event for the "Outdoor" category, whereas "lecture" will

associate it to the "Silent" category. It is important to stress that

these categories are not "true categories" that we wish to classify,

rather merely ranges of feature values. The reason we use this

kind of classification is the fact that a more accurate NLP (Natural

Language Processing) system would have created a larger group

of possible categories – which would be better in general, but

require a longer time to test, as well as a much bigger group of

subjects for our initial experiments. Future implementations

should certainly include some sort of NLP module in order to

deliver more accurate results.

2.1.5 User Interface:
Before switching profiles, the application asks permission to do

so. In order to draw the use's attention, two short vibrations occur

Figure 1: Program Dialogs to change profile

along with a screen dialog, which waits for 5 seconds (countdown

is displayed). The reason for this is the fact that the user might not

be attentive to respond, and therefore the system should not hang.

The user's response (accepting, rejecting or even ignoring) is

saved to a log file for later analysis. An additional dialog enables

the user to release the system from asking for approval in the

future (see figure 1) and thus not disrupt the user further.

2.1.6 Data acquisition:
As mentioned above, the program keeps track of the user's

behavior via the file system: a log file tracks the user's responses

to the profile change suggestions. This log contains the suggestion

timestamp, the suggested profile and the user's reaction. This data,

along with the user's calendar data, allows us to analyze the

algorithm’s behavior and how it affected the actual user

experience.

3. USABILITY STUDY
We ran an informal usability study in order to gauge initial user

impressions and find usability problems. We configured 6 Nokia

N95 phones with the application, where the K parameter was set

to 3 and the learning set minimal size was set to 1000 vectors, and

asked the subjects to continuously use it for a period of 7 days.

We also asked the subjects to move all their calendar management

to Google calendar [3] which was then synched to the phone

calendar using the free Goosync service [4]. We did this in order

to simulate the use of office based meeting management services

with the mobile phone user. After the test we analyzed the usage

logs and ran informal interview with the subjects

3.1 Results
The following table summarizes the results of our usability study.

It contains the following columns:

 Subject – unique ID for each subject

 Total – total number of potential suggestions

 Right – correct suggestions (e.g. "change to Meeting"

when Meeting was indeed required)

 Wrong – wrong suggestions (e.g. "change to Silent"

when Outdoor was actually required)

 Missing – no suggestion occurred, where such was

actually needed

 Not Required – suggestion occurred where it was

actually unnecessary

The red figures show the percentage of correct suggestions.

In general, the application performed as planned and changed

profiles according to schedule, later changing them back when the

Table 2. Application Suggestion Performance

Subject Total Right Wrong Missing Not Required

1 14
14

100%
0 0 0

2 13
10

76.9%
0 3 0

3 2
0

0%
2 0 0

4 11
10

90.9%
1 0 0

5 4
0

0%
0 4 0

6 13
12

92.3%
1 0 0

meeting time was done. Looking at the raw application log data

across subjects shows that most of them accepted the profile

change suggestions by the application: three of the subjects

enjoyed a rate higher than 90% of correct suggestions, one of

them experienced a rate of 77%, and the other two did not get any

correct suggestions (however a deeper analysis of their logs

indicated that they had very low numbers of potential profile

changes, which was insufficient for such a learning algorithm).

3.2 Cross Validation
In order to assess how the results of this statistical analysis will

generalize to an independent data set, we did a small cross-

validation test with subjects 3 and 6 (since they represented a bad

result and a good one, respectively). For this test, we pre-

populated their training set, each with the combined training set of

all other subjects (excluding him/her). We then asked subjects 3

and 6 to test the application for an additional week. The results

appear in Table 3.

Table 3. Application Suggestion Performance – 2nd run

Subject Total Right Wrong Missing Not Required

3 25
16

64%
7 2 0

6 35
30

85.7%
3 1 1

While we see that subject 6 experienced worse performance

comparing to the initial test where no data from other subjects was

used for the training set of subject 6, (mostly since many wrong

suggestions were made because of the mixed training set), subject

3 enjoyed a significant improvement in performance comparing to

the initial test. Additionally, for the first time in our experiment,

we witnessed a case where the system suggested a profile change

when no change was actually necessary (for subject 6). We think

that this too was caused by the mixed training set and will need to

scrutinize the implications of using global training sets in our

future work.

4. DISCUSSION
A seen by the results, a good majority of the application generated

profile change suggestions were accepted by the users. This

means that they found these suggestions useful and are open to

allowing a program to make changes in the operation of their

phone. Had the data shown a clear disagreement with the

suggestions, such a program could not be useful.

It is clear that a more formal and robust usability study must be

run in order to be able to feel more confident about the results and

the issues that are brought up. We plan on doing so with a future

more capable iteration of the application. Within these constraints,

we think that the data shows that users were open to using our

application and believe it to be helpful. Notwithstanding the

above, the trial raised a number of issues which need to be dealt

with before such an application will be really useful.

4.1.1 Adjusting Parameters
There is no doubt that taking arbitrary parameters for K, as well as

the minimal training set, does not necessarily yield the best

results. In order to fine-tune the system, we must perform many

more iterations, checking the effect of adjusting those parameters,

eventually optimizing the system classification.

4.1.2 NLP Module
As specified in section 2.1.4, the initial version of the machine

learning algorithm was merely a proof of concept. In order to

achieve more accurate classification, an NLP module should be

added, so that the vectors' event feature would contain a broader

range of values that can be compared to each other.

4.1.3 User Interface
As described in section 2.1.5, our system needs initial user input

to help gather enough data for generating good quality

classifications. From the user interface perspective it is clear to us

that this is not a good solution, since a program that is meant to

help minimize disruption should not create disruptions itself! Our

hope is that the development of robust global training sets will

enable us to shorten or even cancel this need.

4.1.4 Dealing with special cases
The problem of missing phone calls because of automatic profile

changes raised the issue of being able to learn and deal with

special cases. For example, the system should be able to learn that

if a user accepts a call from someone consistently, no matter what

profile the user is in, then subsequent phone calls from that

contact should cause the phone to “put them through” even if it is

in meeting or silent mode. This will not solve all problems

relating to missed calls when in these profiles, but will help to

ensure that the ones seen as important will raise attention. Note

that such special case treatment does not only have to occur

through learning - a user can manually add a special case flag to a

contact which will do the same thing. This is important since

learning takes time.

5. SUMMARY
The results hint that our program can help in reducing mobile

phone disruptions since the suggestions it made were accepted in

a wide majority of cases. The current implementation is indeed a

giant leap from the initial version, which contains a rule-based

system. A number of problems were identified. The major

problem seems to be the need for a more accurate classification

scheme, where calendar records are analyzed using NLP.

Moreover, additional iterations are required in order to fine-tune

the algorithm parameters in order to find their optimal values. We

also need to test the application for longer time periods with more

subjects, in order to monitor the algorithm’s behavior along time.

6. FUTURE WORK
As stated earlier, a number of improvements are needed in order

to feel more confident that our system can in fact become a useful

tool for minimizing disturbance. We identify the following:

 More testing: Performing additional experiments for

longer time periods, in order to fine tune the algorithm

parameters and conclude how much time is needed in

order to reach a reasonable level of accuracy

 Deeper profile usage analysis: Checking what profiles

people actually use (we believe many individuals only

switch between "general" and "silent", for example)

 Data validation: Cross validating subjects on a larger

scale (potentially creating a global initial training set

which can be distributed with the application)

 Dealing with special cases: the system will learn to

handle exceptional scenarios, such as bypassing silent

mode when a certain contact calls

 Natural Language Processing: Adding an NLP module

for more accurate phone database analysis

 More context data: Extending the feature set to contain

additional information, such as GPS location or cell ID

7. ACKNOWLEDGMENTS
We would like to thank Paul Wisner and Nokia for providing us

with a generous equipment grant.

8. REFERENCES
[1] Cyke64. (2007). Retrieved from

http://cyke64.googlepages.com/

[2] Davidyuk, O., Riekki, J., & Ville-Mikko, R. Context-Aware

Middleware for Mobile Multimedia Applications. MUM

2004. College Park, Maryland, USA.

[3] Google-Calendar. Retrieved from

http://www.google.com/calendar/

[4] Goosync. Retrieved from http://www.goosync.com/

[5] Handy Profiles for S60. Retrieved 2 2008, from

http://nokiae70-software.epocware.com/Handy_Profiles.html

[6] Mynatt, E., & Tullio, J. (2001). Inferring Calendar Event

Attendance. IUI’01. Santa Fe, New Mexico, USA

[7] Nokia. (2007). Python for S60. Retrieved from

http://opensource.nokia.com/projects/pythonfors60/

[8] Photo Contacts Pro 5. Retrieved 2 2008, from

http://microsoft.handango.com/PlatformProductDetail.jsp?sit

eId=75&jid=432431334B12EEB287FE33DD1D7FD3FB&p

latformId=2&productType=2&catalog=0§ionId=0&prod

uctId=166074

http://www.goosync.com/
http://nokiae70-software.epocware.com/Handy_Profiles.html
http://opensource.nokia.com/projects/pythonfors60/
http://microsoft.handango.com/PlatformProductDetail.jsp?siteId=75&jid=432431334B12EEB287FE33DD1D7FD3FB&platformId=2&productType=2&catalog=0§ionId=0&productId=166074
http://microsoft.handango.com/PlatformProductDetail.jsp?siteId=75&jid=432431334B12EEB287FE33DD1D7FD3FB&platformId=2&productType=2&catalog=0§ionId=0&productId=166074
http://microsoft.handango.com/PlatformProductDetail.jsp?siteId=75&jid=432431334B12EEB287FE33DD1D7FD3FB&platformId=2&productType=2&catalog=0§ionId=0&productId=166074
http://microsoft.handango.com/PlatformProductDetail.jsp?siteId=75&jid=432431334B12EEB287FE33DD1D7FD3FB&platformId=2&productType=2&catalog=0§ionId=0&productId=166074

Infrastructure Requirements

