
Hoverflow: Exploring Around-Device Interaction
with IR Distance Sensors

Sven Kratz
Deutsche Telekom Laboratories

TU Berlin, Germany
+49 30 8353 58289

sven.kratz@telekom.de

Michael Rohs
Deutsche Telekom Laboratories

TU Berlin, Germany
+49 30 8353 58469

michael.rohs@telekom.de

ABSTRACT
By equipping a mobile device with distance sensing capabilities,
we aim to expand the interaction possibilities of mobile and
wearable devices beyond the confines of the physical device itself
to include the space immediately around it. Our prototype, an
Apple iPhone equipped with six IR distance sensors, allows for
rich 3D input, comprising coarse movement-based hand gestures,
as well as static position-based gestures. A demonstration
application, HoverFlow, illustrates the use of coarse hand gestures
for interaction with mobile applications. This type of interaction,
which we call Around-Device Interaction (ADI) has the potential
to help to solve occlusion problems on small-screen mobile
devices and scales well to small device sizes.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control structures.
This is just an example, please use the correct category and
subject descriptors for your submission. The ACM Computing
Classification Scheme: http://www.acm.org/class/1998/

General Terms
Your general terms must be any of the following 16 designated
terms: Algorithms, Management, Measurement, Documentation,
Performance, Design, Economics, Reliability, Experimentation,
Security, Human Factors, Standardization, Languages, Theory,
Legal Aspects, Verification.

Keywords
Keywords are your own designated keywords.

1. INTRODUCTION
Using sensors, the interaction space of small mobile devices can
be extended beyond the physical boundary of mobile devices to
include the full 3D space around them. We call the resulting
interaction space Around-Device Interaction (ADI). Around-
device interaction has the potential to be a beneficial addition to
standard interface elements of mobile devices, such as keypads or
touch screens. This is particularly attractive for very small
devices, such as wristwatches, wireless headsets, and future types
of wearable devices such as digital jewelry (Figure 1).

Figure 1. Interacting with very small devices via coarse
gestures. The gestures are detected by an array of proximity

sensors extending in radial direction from the device.
The space beyond the device, however, can easily be used, no
matter how small the device may be. Such wearable devices can
also serve as easily accessible controllers for appliances in the
environment or for wireless communication applications. In a
smart home environment, for example, a gesture on the device
could dim the light or control the volume of entertainment system.

In this demonstration we present a prototype ADI-based interface
using an Apple iPhone augmented with six IR distance sensors. A
demonstration application, HoverFlow, shows how coarse hand
gestures, which are performed in the vicinity above the device,
can be used to browse and select colors from a palette in a mobile
application. In the following, we will give a detailed description
of the hardware and software implementation of our prototype and
show a number of movement-based gestures that are suitable for
recognition by proximity sensors. Furthermore we will discuss
why this prototype is a valuable exhibit to be shown as a
demonstration at Mobile HCI 2009.

2. RELATED WORK
The Gesture Pendant, developed by Starner et. al. [], is a small
mobile device that is worn around the neck as a pendant. Using a
camera, it enables the detection of hand gestures to control a home
automation system. In contrast to Gesture Pendant, our work uses
a substantially cheaper tracking system. Additionally, the reliable
distance measures provided by the IR sensors allow for simple
software implementation of the gesture recognition.

Copyright is held by the author/owner(s).
MobileHCI’09, September 15 - 18, 2009, Bonn, Germany.
ACM 978-1-60558-281-8.

Figure 2. The current set-up of our prototype. Six Sharp
GP2D120X IR distance sensors are placed along the long
edges of an iPhone mobile device running the HoverFlow
application (described in Section Fehler! Verweisquelle konnte
nicht gefunden werden.). Using simple hand gestures, the user
can scroll and select colors in the color palette.
Hinckley et. al. adopted the idea of placing an infrared (IR)
distance sensor on a mobile device and investigated technical
characteristics of this kind of sensor technology [5]. The infrared
distance sensor allowed the device to detect the presence of the
user. This idea is used today in a number of Digital Single Lens
Reflex (DSLR) cameras that switch off the LCD display on the
back when the user looks through the viewfinder.

SideSight [3] is an instance of an around-device interface by
locating a series of IR sensors on the long edges of a small mobile
device. This technique allows capturing simple multi-touch
gestures around the device’s perimeter. SideSight focuses on
minimizing occlusion problems and is designed for operation
while the device is placed on flat surfaces. In SideSight, the field
of the distance sensors extends across the display surface to the
left and right of the device. In our prototype the sensors are
oriented towards the user to allow for handheld interaction (one
hand is holding the device, the other hand performs the gesture).
In more flexible setups, the distance sensors should be oriented in
multiple directions to cover the whole space around the device.

Baudisch and Chu [2] focus on adding pointing input capabilities
to very small devices. In order to avoid occlusion they use a touch
screen on the back of the device and show that this approach is
successful even for display sizes below 1". Since interaction with
the nanoTouch device [2] means touching the back of the device,
the possible physical extent of input movements is still given by
the size of the device. In contrast, around-device interactions are
independent of the physical size

Figure 3. An overview of the hand gestures currently
recognized by our prototype.

3. HOVERFLOW
Our HoverFlow is an example application for the Apple iPhone
that demonstrates the use of a sensor-based interface for detecting
coarse hand-gestures above small mobile devices. The
implementation of our application is partially based upon the
CoverFlow Example by Sadun [13]. HoverFlow allows the user to
select colors from a color palette through hand. Possible gestures
are moving the hand across the device, presenting a number of
hand postures, or by moving a hand rapidly towards or away from
the device. Figure 3 shows an overview of all gestures currently
implemented in our system.

3.1 Supported Gestures
The CoverFlow View provided by the iPhone’s iPod application
inspired the visual layout of HoverFlow. Thus, we decided to map
the user’s movements in the following way: if her hand moves
across the device from left to right (Figure 3 A), the color palette
scrolls from left to right, and vice-versa (Figure 3 B). A hand-
edge movement from left to right (Figure 3 C) makes the color
palette scroll 5 colors to the right and vice-versa (Figure 3 D). A
color is selected when the user moves her hand swiftly towards
the device (Figure 3 G). A color is deselected when the user
moves her hand rapidly away from the device. Rotating the hand
towards the left (Figure 3 E) or right (Figure 3 F) permits the user

to scroll directly to the beginning or end of the palette,
respectively.

3.2 Interface Implementation
3.2.1 Sensing
To capture simple hand movements and gestures, our prototype
system uses six Sharp GP2D120X IR [16] distance sensors,
placed around the device’s edges and facing vertically away from
the device. Figure 2 shows the current sensor configuration of our
prototype.

An Arduino BT [1] microcontroller board captures the distance
readings provided by the sensors. The sensors supply 256 discrete
range readings allowing them to detect distant objects from 4 to
30 cm away. The sensor update rate is 25Hz. A PC processes the
sensor data, and handles the gesture recognition. In future
versions of HoverFlow, we aim to conduct all processing on the
mobile device, by establishing a direct link between the Arduino
board and the mobile device via RS-232 or Bluetooth.

3.2.2 Gesture Detection and Recognition
To smooth the raw sensor data, it is passed through a Savitzky-
Golay filter [15] in an initial processing step. The filtered data is
then added to a queue containing the differences of the last 16
sensor readings, i.e. the difference . We use the
difference values instead of the absolute values in order to make
gesture recognition independent of the distance between the user’s
hands and the device. The queue is updated every time the
Arduino provides a new sensor reading. The window length of 16
was chosen because the sampling rate of the distance sensors is 25
Hz, which means that the system constantly keeps a history of the
last 640 ms of interaction. This window length provides us with
enough samples do discern user gestures in a meaningful way
while at the same time assuring a response time from the system
within a acceptable time interval (<1000 ms).

An advantage of the method we implemented is that it does not
require any clutching mechanism to detect the start and end of a
gesture, which is often required for accelerometer-based gesture
recognition. When no IR-reflective object is present in the range
of the distance sensors, they will provide a noise floor of values
close to zero. Gestures can be distinguished from operation on the
touch screen, by checking whether the screen was touched after
the distance sensors detect an object in range. If a screen touch
event occurs then this activity is interpreted as touch input and the
gesture is discarded. Otherwise the activity is treated as a gesture.
Accelerometers constantly provide sensor data as the user moves.
It is therefore much harder to distinguish between moves that are
part of a gesture and those that are not.

To determine if a significant user movement has been detected,
the Euclidean norm of the oldest element of the readings queue is
constantly calculated. If this norm surpasses a predefined
threshold, the remaining 15 sensor readings are analyzed to
determine the end of the sequence representing user input.
Interaction with HoverFlow is designed to take place within a
certain distance range around the device, so this threshold is set to
the value the sensor array provides when a large object is held in
front of them at a distance of about 5-7 cm away from it.

3.2.3 Gesture Classification
Once the bounds of the sequence containing user activity have
been detected, a best-matching gesture template from a set of

prerecorded user inputs is estimated using Dynamic Time
Warping (DTW). A good overview of how DTW functions can be
found in [11, 14]. Gestures and templates are represented as 16-
by-6 matrices of sensor value deltas.

DTW performs well in cases where the captured sample and the
matching template are distorted in time, but have similar values.
In our case, using DTW allows the recognition of gestures that are
similar in movement to but are performed at different speeds than
the pre-recorded templates. In our prototype, we achieved
acceptable recognition rates using only 2 to 3 training samples per
gesture, with a gesture vocabulary of up to 9 gestures.

DTW-based approaches generally need less training samples than
other methods, such as Hidden Markov Models [21]. Thus we do
not require an extensive corpus of gestures to be available in order
for our prototype to function correctly. A possible drawback of
the DTW algorithm, its time and space complexity of , is
not an issue due to the small size of the sampling window, which
results in a maximum size of the distortion matrix of 256
elements. (Entry (i,j) of the distortion matrix contains the DTW-
distance between samples 1 to i of the gesture and samples 1 to j
of the template. Entry (16,16) thus contains our measure of
similarity between gesture and template. The distortion matrix is
built up from entry (1,1) using a dynamic programming
approach.) Because of the small size of the distortion matrix, CPU
and memory requirements should not present a constraint for our
algorithm if it is run on modern mobile devices. If, however,
sensors with a higher sampling rate were to be employed, which
would result in larger data sets to be processed at a time, it may be
likely that further optimizations of the DTW algorithm, such as
FastDTW [14], will be required.

3.2.4 Update of Mobile User Interface
Once a gesture has been detected, the user interface of the mobile
device running the HoverFlow application needs to be updated. In
our prototype, the PC sends XML-RPC calls to the mobile device
to signal interface updates when new gestures have been detected.

4. ADVANTAGES OF AROUND-DEVICE
INTERACTION
We built our prototype to demonstrate the advantages of Around-
Device Interaction (ADI). ADI shows promising potential as an
interface technology complimenting existing mobile device
interfaces.

The occlusion problem on small device displays is at least
partially solved by ADI, as implemented in HoverFlow. Because
the user interacts with the device at a certain distance from its
screen, a gap opens up between the user’s hand and the display,
allowing the user to see the display’s contents at an angle.

Using ADI, fast but coarse interfaces can be implemented; in the
case where the desired actions are so simple that fine-grained
input using the device’s keypad or touch-screen is not necessary.
Although ADI breaks the metaphor of direct manipulation [3],
quick hand gestures may be particularly useful for tasks of an
immediate and direct nature. Also, situations where visual
interaction is not preferable, for example when driving vehicles,
may benefit from interfaces that allow the input of simple
commands using rough hand gestures.

5. ONGOING IMPROVEMENTS
By the time of demonstration we aim to have an even better
prototype on our hands. We are currently working on these
specific points

- further improvement of the gesture recognition
algorithm

- add continuous interaction modes, i.e. gestures allowing
the control of a continuous parameter, such as volume

- implementation of on-screen feedback to aid gesture
input and to continuous modes of interaction

- implementation of further applications for the
demonstrator, such as (but not limited to) a web-
browser, media player, call-placement tool

- Upgrade of the sensor package to use a larger number of
smaller, SMD, sensors to further improve the quality of
the interface

- 3D printing of casing that combines the host device and
the sensor package

6. SUMMARY
We demonstrate a prototype of a mobile user interface, which
allows mobile devices to track coarse hand gestures using a small
number of IR distance sensors. Our example application,
Hoverflow, demonstrates the concept of expanding the interaction
area of mobile devices beyond their physical boundaries. Our
prototype shows how this technique can enhance mobile
interaction either as a complimentary technique co-existing with
existing interface technology or as a stand-alone interface for very
small devices.

7. REFERENCES
[1] Arduino: prototyping boards and development environment,

http://www.arduino.cc .

[2] Baudisch, P. and Chu, G. 2009. Back-of-device interaction
allows creating very small touch devices. In Proc. of
CHI ‘09.

[3] Butler, A., Izadi, S., and Hodges, S. 2008. SideSight: Multi-
"touch" interaction around small devices. In Proc. of
UIST '08. ACM, 201-204.

[4] Hinckley, K., Pierce, J., Sinclair, M., and Horvitz, E. 2000.
Sensing techniques for mobile interaction. In Proc. of
UIST '00. ACM, 91-100.

[5] Kruskall, J. & M. Liberman. The Symmetric Time Warping
Problem: From Continuous to Discrete. In Time Warps,
String Edits and Macromolecules: The Theory and Practice
of Sequence Comparison, pp. 125-161, Addison-Wesley
Publishing Co., Reading, Massachusetts, 1983

[6] Sadun, E., iPhone Developer’s Cookbook, Pearson
Education, November 28, 2008, ISBN 0321555457.

[7] Salvador, S. and Chan, P., FastDTW: Toward Accurate
Dynamic Time Warping in Linear Time and Space, KDD
Workshop on Mining Temporal and Sequential Data, 70-80,
2004

[8] Savitzky, A., Golay, M.J.E. 1964. Smoothing and
Differentiation of Data by Simplified Least Squares
Procedures. Analytical Chemistry, 36 (8), 1627-1639.

[9] Starner, T. and Auxier, J. and Ashbrook, D. and Gandy, M.
The gesture pendant: A self-illuminating, wearable, infrared
computer vision system for home automation control and
medical monitoring. International Symposium on Wearable
Computing 2000. Pp. 87-94.

